How CHF Patients can Take Advantage of Translational Research?

In nature every action spawns a separate and equal reaction. In the field of medicine, the reaction may not always be equal to the action. The performance of a particular treatment in the lab on test animals may not be the same as would be seen in a human subject; this is where the field of translational research comes in.

Translational research takes research from the laboratory to the patient’s bedside. This can be done in several forms. In its earliest stages a treatment will undergo controlled clinical trials with a voluntary group of test subjects. If these small, controlled tests meet the acceptable range of success the treatment is then taken to research hospitals such as St. Jude’s or Children’s Hospital of Boston. Here patients are given the opportunity to experience new methods of control and treatment of a disease with the understanding that it is still considered highly experimental; however, for many these treatments represent a chance for a cure that previously as out of reach for them as the moon.

Congestive heart failure is, at the moment, an incurable event, occurring when for whatever reason the cells of the heart muscle are destroyed and the heart can no longer adequately pump blood throughout the body. Once the cells in the heart tissue are non-functional the body is unable to replace them, making it impossible for the heart to regain full heart function on its own. The current mortality rate is high, and over fifty percent of patients with congestive heart failure will die within five years of being diagnosed. There are many treatment options currently being considered for congestive heart failure, however, and a number of new technologies being tested daily. For example, Montefiore Medical Center in New York City is currently doing clinical trials on a drug known as Lovosimendan, a calcium sensitizer that does not trigger cardiac arrhythmia, and research into the possibility of using stem cells to regrow cardiac tissue is ongoing.

For a patient to take advantage of these options they should discuss the possibility of being a subject for clinical testing with their physician to see if they would be a good candidate, then allow the physician to make a recommendation on a course of action from there. It may be suggested that the patient contact a research facility, or the physician may suggest their name for a clinical trial they know is occurring soon. If the patient lives in an area with a research hospital nearby, chances are there will be an opportunity for them to benefit from the hospital’s policy on translational research.

It should be understood that translational research is precisely what it sounds like; research. Scientists and doctors are often still learning about the treatment and its effect on the human body, and there is always a possibility that it will be unsuccessful or carry with it many hazardous side effects. These courses of treatments are unknowns to physician and researcher alike. For patients who have run out of options, however, even the possibility of a negative effect cannot stifle what the opportunity to be part of a translational research project provides: hope.

How Can Stem Cells Be Used to Treat Congestive Heart

How Can Stem Cells Be Used to Treat Congestive Heart Failure?

Heart failure is a devastating blow to the body system, and despite the best efforts of clinicians and researchers often results in permanent organ damage and eventual death. Researchers are fighting to put a stop to the high mortality rate of congestive heart failure, and believe stem cells may be the way to do it.

The possible uses for stem cells have made it a highly published topic in medical journals today. Stem cells are the precursors to every cell in the body, and are primarily produced in the bone marrow in adults. During times of crisis, such as when a patient suffers from leukemia, the spleen and other organs that possessed stem cells during fetal development will take over production. This is the body’s way of maintaining proper cell balances and replenishing itself as old cells die. For example, red blood cells in the circulation only have a lifespan of approximately four months; during that time the hematopoietic stem cells in the bone marrow are continuously producing new rubriblasts, the precursor cells that will over time become mature erythrocytes.

There are several forms of stem cells; for the sake of research scientists are currently focusing on the embryonic and adult varieties. Embryonic stem cells come from a blastocyst, a four to five day old human embryo. During gestation these pluripotent cells will divide and multiply, forming the body and internal organs of the fetus. Embryonic stem cells are highly valued for research for several reasons; they are able to provide large numbers of replenishing cells and have no limitations on what form of cells they can become. The use of embryonic stem cells is highly controversial, however, due to the fact that collection often requires the destruction of the embryo.

There are several methods that have been published in research journals regarding the application of stem cells in the treatment of congestive heart failure. Congestive heart failure results when cells in the heart are dysfunctional or destroyed and the heart is unable to properly pump blood throughout the body. Some patients are able to be treated using mechanical aids or transplant, but this is not always the case. Several years ago a group of patients with no other available options for treatment agreed to be part of a test study regarding stem cells. Autologous stem cells were removed from the marrow and injected into the failing heart tissue through the chest wall. Patients who received this treatment showed marked improvement, presumably as a result of stem cell action. The precise means by which this occurs is still unknown; however, research scientists speculate that the stem cell is either growing new vessels or acting as a beacon to bring other cells in to repair the damaged tissue.

Another possibility regarding stem cells is the growth of tissue for transplant. Hearts available for an organ transplant are not as easily obtained as physicians would desire, and there are often waiting lists years long for every available organ. Stem cells grow readily in a laboratory environment, and if unstimulated to differentiate will reproduce pluripotent daughter cells. This results in a tissue that will essentially adapt to whatever environment it is placed in. Research scientists speculate that with the proper environment essentially grow heart tissue and transplant it to the patient who has suffered heart failure, replacing the dead and damaged tissues with live, vital tissue. This procedure would allow the heart to function more easily and hopefully give the patient a better chance for survival.

With current treatment the prognosis for sufferers of congestive heart failure is grim. At least fifty percent will die within five years of being diagnosed, and those who are not victims of this mortality rate will feel the effects of their heart failure for the rest of their lives. Stem cell research represents a chance for those patients to beat these odds.

How Can Genes Contribute to and Cure Congestive Heart Failure?

How Can Genes Contribute to and Cure Congestive Heart Failure?

It is common knowledge that heart failure follows another severe form of heart damage; however, until now scientists and doctors have had no way to identify those at risk. New research into genes and gene therapy have made them a potential weapon in the fight against heart failure.
Scientists have made several discoveries regarding the role of genes in the detection and treatment of heart failure. Several years ago it was discovered that a small percentage of patients who had suffered heart failure possessed a defect in the gene that allows the body to detect stress signals; in essence, the heart does not know that it is working to hard and is unable to adjust. This percentage may seem insignificant; however, the gene mutation was not present in any of the healthy patients examined. Researchers stress that this is a susceptibility factor, not a cause of congestive heart failure; however, it may be the breaking point when determining if a heart suffering from other disease will fail. Detection of this mutation may allow doctors to identify and treat patients at risk prior to their heart failing rather than after.

This defect is found in the ATP-sensitive potassium channels and is caused by a genetic mutation. The potassium channel regulates potassium and calcium levels in the body. While the heart must have calcium to function, an excess of calcium leads to damage. This is the reason calcium blockers are often given to patients with congestive heart failure. Fortunately, medications to open the potassium channel already exist.

In addition, a defect of the delta-sarcoglycan gene has been seen in hamsters with muscular dystrophy and cardiomyopathy. This gene is the cytoskeleton of muscle fibers, and successful transplant of a normal human delta-sarcoglycan gene has been shown to cause a tremendous improvement in these animals. This is noteworthy because current transplant attempts require open heart surgery. This type of gene transplant is carried on a virus, eliminating the need for surgery.

Scientists had been a bit concerned with using this method of gene therapy due to the need for a systemic effect. There was also some concern that the body’s natural immune system would eliminate the virus of its own accord prior to successful delivery of the gene; however, they believe they have found the best form of virus to successfully slip past the body’s defenses. When transplanting the delta-sarcoglycan gene researchers used a type eight adeno-associated virus, piggybacking the corrective gene onto it as it was inserted into the body. This allowed the gene to be carried to all areas of the body in animals with muscular dystrophy without being destroyed by the body’s own natural immunity.

Gene therapy is still highly experimental, and researchers are unsure yet of the role it will play in the conquest of heart failure; however, this represents a technology that was unavailable thirty years ago. Continuing advancements in technology and medicine’s knowledge of the body’s building blocks may one day unlock the mysteries to the cure of this deadly disease.

How Can Continuing Medical Education Credits Be Obtained?

While physicians spend many, many years in school prior to receiving their MD, it is impossible for them to learn everything there is to know. The medical field is simply too vast, and it is constantly in motion; therefore, it is important that every physician complete continuing medical education.

Continuing medical education (CME) allows a physician to stay abreast of new discoveries, treatments, and other advancements in their chosen field. What worked thirty years ago is not usually the method of choice for today’s physicians, and clinicians who do not complete these continuing education credits may often be placing their patients at risk because of a lack of knowledge of treatments that have been deemed ineffective or hazardous. Unfortunately, often when a physician is wrong it is the patient‘s life that pays the price.

Due to this, every physician is required to complete a minimum number of CME credits every year; however, they are certainly not required to stop once that number is met. This does not necessarily mean returning to school, although this is certainly an option; however, for most physicians caring for their patients leaves them little time for the heavy workload of a secondary education institution. Many other more convenient options are available to them.

Across the nation hundreds of thousands of medical conventions, symposiums, workshops and conferences are available to healthcare professionals, covering topics from new surgical techniques to treat collapsed heart valves to the use of stem cells to treat congestive heart failure; all cutting edge technology not yet taught in the classroom. These often take place over the course of a weekend, often last more than one day and are held in various locations, so physicians from any location in the country may attend at their discretion.

In many rural areas there is only one doctor available, often with no one to see to their patients when they are unavailable. These are the physicians who are still on call twenty four hours a day, make their own hospital rounds and see patients from birth to death for everything from a toothache to a heart attack. Needless to say they are often unable to get away from their practice to attend weekend workshops. Another option is available for them so they can continue to provide their patients with around the clock care. The internet has opened up a whole new world to the field of continuing education. Many organizations, such as the American Medical Association (AMA) and the American Association for Continuing Medical Education (AACME) offer resources online for healthcare workers to complete their continuing medical education credits. Here clinicians will have the opportunity to complete coursework online, view online conferences and use the teleweb to attend lectures and symposiums.

These CME resources may be found free of charge or for a small fee per credit hour, depending on the situation; however, this is infinitely less expensive (and time consuming) than returning to a college or university, and offer greater benefits because attendees are able to stay apprised of new research and untried methods that are not taught to students.

It is true that no one ever stops learning, and this is especially true in the medical field. Continuing medical education allows clinicians to stay on top of their field and provide the best, most advanced care options available to their patients.